EFFECT OF MASS EXCHANGE AND HETEROGENOUS
CHEMICAL REACTION ON STABILITY OF LIQUID
FILM

L. M. Rabinovich UDC 532.501.34;66.061.5

Stability is analyzed of a laminar liquid film during a heterogeneous chemical reaction. The
dispersion equation is obtained and stability regions are found for longwave, as well as short-
wave, perturbations.

§1. Mass-transfer processes on the interface surface may exert a considerable effect on stability
characteristics of this surface; in particular, they may result in a specific surface instability — the so-called
interface turbulence [1] whose mechanism is closely related o the rate of mass transfer; this result has been
verified by a number of experiments [2-6].

The above-mentioned effect is of considerable interest in practice in view of the increase of artificially
produced mass-transfer processes in a number of chemical reactors (for example, in thin-layer reactors).
The mass exchange is generally accompanied by homogeneous or heterogenous chemical reactions which take
place either in the liquid film or in the surrounding (usually gaseous) phase.

In its full formulation the investigation of stability of this kind of system with regard to small perturba-~
tions is very complex and mathematically involved. However, to obtain preliminary qualitative results a
somewhat idealized scheme of surface instability is considered below (the existence of thin hydrodynamic and
diffusion boundary layers is assumed close to the surface, the chemical reactions being heterogeneous and of
the first order). The problem investigated in this article is as follows: to find the regions (depending on the
wavelength of the perturbations) of stability of a laminar film by solving the dispersion equation taking into
account the Marangoni effect [1].

§2. Let us consider a thin liquid film whose surface separates it from the gas phase. A laminar flow of
the film takes place (Re = 20-30, Pr > 1) down a vertical plate in the gravitation field with a gas flow in con~
tact with the surface. It is assumed that the gas motion takes place with a sufficiently slow rate so as to
maintain the laminar state of the liquid flow.

For such a system the mass exchange is limited by the transfer processes in the liquid, since their
rate is much lower than the corresponding rates in a gas; this enables one to consider the mass transfer only
in the liquid phase. On the film surface a monomolecular chemical reaction A — B, takes place for which a
number of assumptions is made: the reaction is irreversible; the product of reaction B is chemically pas-
sive; the reagent A is chemically passive in the film; the kinetics of the process is mixed, that is, the rate of
the chemical reaction is comparable with the speed of transporting the reacting matter.

The equations of motion for the liquid, as well as the equation of convective diffusion in a thin film, can
be considerably simplified, since the approximations can be used for hydrodynamic and for diffusive boundary
layers [7].

In our system the analysis of mass transfer consists in solving a linearized stability problem with re-
spect to two-dimensional infinitely small perturbations of velocity and of concentration which are expanded
into a Fourier series along the film with an amplitude depending on the cross section coordinate.

§3. The motion of the liquid film is governed by the nonstationary Navier—Stokes equation in the bound-
ary-layer approximation in the (X, y} coordinate plane; x is measured along the film plane in the direction of
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Fig. 1

the original unperturbed laminar flow and y is normal to the plane towards the depth of the liquid ( Fig. 1,
where 1 denotes the liquid film and 2, the gas flow). To analyze the hydrodynamic stability of the film, the
velocity components are represented in the form

- uy = ul) + ud, Uy =u§,0) + ué”,
where u}(g’, ug‘}’ are the solutions of the stationary equation and u(}(’, u(}) are small perturbations. It follows
from the general theory of convective diffusion in fluids [7] that for high Prandtl numbers the thickness of
the diffusion boundary layer is many times smaller than that of the hydrodynamic boundary layer; the latter

enables one to set u}(é” identically equal to the velocity u of the liquid flow on the film surface. If we proceed
now to the flow function,

ul) = 0pldy, u = — opidz

so that the continuity equation becomes an identity and bearing in mind that u‘,‘? =, ugg’ = 0, then the Navier
—Stokes equation is reduced to the Helmholtz type equation,

(0/0t + udlaz)Ay = vA™, (3.1)
where v is the kinematic viscosity. A solution of Eq. (3.1) is sought in the form
P = ¥(y) exp li(kz 4+ o))
with amplitude
W(y) = A exp (Ay),

where w and k are the frequency of oscillations and the wave number of the perturbations, respectively; A
is a numerical multiplier. Equation (3.1) then yields for A the relation

(2 — )2 — & — (0 + u kv—1] = 0,
and, hence, together with the boundary conditions,
ul’ 0, uf’ — 0 (y— %)
it follows that
A=k hy=h=—[ + i(0 + uk)vIvi2
If one regards the film surface as flat,
5’ =0 (y=0),
one obtains a solution of Eq. (3.1) uniquely determined up to a constant,

¥ = Alexp (—ky) — exp (—Ay) 1exp li(kz + ot)l]. (3.2)

§4. Mass transfer in a liquid film is governed by the convective-diffusion equation in the boundary-layer
approximation. The stationary concentration of the reagent A satisfies the equation

wdc oz = DD /oy?, (4.1)

where c(g) denotes the stationary concentration; D is the diffusion coefficient. Another variable is now in-
troduced, namely,

1 = (u/4D)y*z~,
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which results in replacing Eq. (4.1) by an ordinary differential equation of the second order,
nd?c (0)/dn- +{n4-1/2) dc(D)’dn =0, 4.2)

The boundary condition on the film surface can be specified by the mixed kinetics of the chemical reac-
tion, that is,

DAV oy = — ¢ (y = 0), (4.3)

where q is the constant rate of chemical reaction. Considering that the change in concentration occurs
in thin liquid layers, the conditions far from the film surface are naturally considered, therefore they
are specified at an infinitely large distance from it, i.e.,
¢D =¢, (y— o). (4.4)
Integrating Eq. (4.2) and using the boundary conditions (4.3) and (4.4), one obtains the sought distribu-
tion of the stationary concentration in which the explicit dependence on x has been replaced by the parametric
dependence on the linear dimension L,
(O co(uD/an)V? o coerf W(u/4DL)Y2y]
¢ gL — (uDialy3q] [t —(uD/aL) g’

and from the above one obtains in the case of q > (uD/ 71)? the relation
e =¢, erf [(wyr/4DL)12), (4.5)
We now proceed fo the solving of the nonstationary equation of convective diffusion for the concentration
of the substance A written in the form
Cq = cf,o) -+ c(a”,
where
c‘a’) = G, (y)expli(kx -+ ot)].
The nonstationary diffusion equation in its linear approximation with the obvious estimate
aciox < 8¢ / 8y
taken into account is transformed into
DD 19y? — udcVjox — acP/at = — (apjaz) (0c/y), (4.6)

where the expressions for the stationary concentration c(g) and the stream function ¢ are given by the distri-
butions (3.2) and (4.5). The system of equations (3.2), (4.5), and (4.6) is now completed by the boundary condi-
tion

c(é)=0 (y— o). (4.7)

On the film surface the continuity condition for the tangential component of the stress tensor must also
be satisfied, that is, the equality of the viscous stress and the surface force per unit of film surface,

u [6u§c”/0y -+ du, 1)/c'J‘a:J = (da/dc(”) (069)/596), (4'8)

where p is the dynamic viscosity coefficient; ¢ is the surface-tension coefficient. By virtue of the known
kinetics of a chemical reaction one has

DacVjay = — gelP (y = 0). 4.9)

Equation (4.6) is reduced to the ordinary inhomogeneous differential equation for the perturbation am-
plitude Ggly):

&G, dy* + oG, = fly),
where a = —(I!D}Xuk + o);
flyy = —Q2ik/nt2 D)Alexp (—ky) — exp(—hy)le, (4D LY? exp (—uy* 4DLY,
and hence by using also the boundary condition (4.7) one finds '
Gu(y) = (B 4+ A, (y)) exp (—ia!?y) + 4, (oz) — I {y)lexp (iee!2y). (4.10)

where
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A, = ik(ey/ D)(u/nDL)!24;

¥ v
1 .
I(y)= T j , (e—*% — e—*) exp [— ut*/4DL — ial/2yjdy; I,( y)}l—;—i- 5 (e—** — e=3")exp [— ur?/4DL | ial/2t}dy;
= i

By substituting (4.10) in (4.8} and (4.9), one obtains a system of two algebraic equations for the con-
stants A and B with a vanishing determinant,

#2DA2( w0 + ukp2 + g(o + uk) +2¢,8(v/p)u/nDL) 2R (o) = 0, (4.11)
where
§ = do/delD,

The above condition represents the sought dispersion equation which can be separated into two real
equations:
D2W, 4 q(Q + uk) + cd(v/p)(w/aDL) 2k Tml = 0; (4.12)
DYy — qQ, -+ ¢8(v/p)w/aDL)V 2k Rel = 0,
where Q4, Q, are the real and imaginary parts of w, I= 2iJ (»), respectively;

Wiz = “vii (F Q[0 —3(Q, + uk)?] +][Q2[0F — 3(Qy+ uk)?]? + (@, 4 uk)? [3Q3 — (@, + wk)?]*] ")V

§5. We now proceed to the solving of the obtained dispersion equation. It is noticed that by reducing
I; (=) to an integral of the Poisson type, one is able to find its exact analytic form though the bulkiness of the
latter makes it very difficult to solve analytically the dispersion equation itself. Only asymptotic values of
the integral I(~) are therefore used. First of all, stationary perturbations are found which spread in the
state of neutral stability, that is, for w = 0 (the perturbations neither grow nor are attenuated in the course
of time). If in the case of small wave numbers (k < L™!) one estimates the integral by the steepest-descent
method [8], then one obtains the principal term of its asymptotic expression, namely,

I (>0} = {(i — 2)/2{nDLIu)212(Divy2 — (DIv)1Lk.
One then finds from (4.11) the value of the sought wave number,
= (17)/3) (quu)/ [cgdDV2 (2v1/2 — DV2)—12 L3[%,
where
Ly = (27/4)pw*D¥3[g%,8(2v1 2 — D1 2], (5.1)

The relation (5.1) is a condition imposed on the parameters so that neutral stability takes place for
longwave perturbations. In the case of high wave numbers (k > u/D, k >» L1y, to estimate I;(») one
neglects terms of higher orders of smallness in the index of the exponential in the expression under the inte-
gral sign, thus obtaining

I(o0) = u/2k(2vk — iu).

One now obtains from the dispersion equation the shortwave perturbations spreading in the neutral stability
state,

k= {(1/7/2) (D2u¥2lgv) £ [Dud/2g** — 2e,8(u/nD L) 2(pg)—t — 2ulv]i2p,

The value Ly, that is, the condition which has to be imposed on the parameters, can also be obtained
from Eqgs. (4.12).

By considering now the nonstationary perturbations (w =0), one can find the trivial solution of the dis-
persion equation,

Q, = — uk, G, = 0. (5.2)

Consequently, perturbations whose real frequency satisfies the relation (5.2) spread in the state of
oscillatory stability. An estimate of the integral by the method of steepest descent for k « L'l +Q/u given
by

I(s0) = [(i — 2)/2(xDLIu)2(2DIv)'2 — (D) )k + Q/u)L
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enables one to find the other value of the real frequency of perturbations whose stability is of oscillatory
character,

Q) = 2,8 (L/pu)? (2v1/2 — DV2) kb — uk,,

where
ky=(1/1/3) (guu)l/2 [e,8LDV2(2v1/2 — D2)]=112,

A similar estimate can also be obtained in the general case of complex frequency for longwave pertur-
bations (k «< L1 + | w]/u).

In the latter case the dispersion relation is given by
Q, = — 3¢382 (L/pu)? (2vV2 — DY2)2kA - bqeyd (Lipu) D—1/2 (29172 — D2 k* — g2/,

This function is shown in Fig. 2. The domain Q, < 0 corresponds fo the unstable state and @, > 0, to
the stable one. For high wave numbers (k > u/D) the integral is estimated by means of the expression

I(>) = — (1/4)(0 + uk)v—1k—2,
and the dispersion equation then implies that
Q. =0.

Consequently, perturbations whose stability is not oscillatory in character do not exist in the shortwave
domain under consideration.

§6. The quantitative results obtained in the preceding section show the periodic character of stability
for the system under investigation, that is, the aliernating pattern of the stability domains with variation in
the wavelengtheof the perturbations. The rate of growth for the perturbations then depends on the physical
parameters of the systems as follows: a) a strong dependence of the surface tension on the concen-
tration of the dissolved matter contributes to a rapid intensification of the perturbations; b} the increase of
the Prandtl numbers, which indicate that convective mass transfer prevails over molecular, also increases
the rate of growth of the perturbations; ¢) the growth rate of the hydrodynamic flux delays this process; d)
the higher rates of chemical reaction are associated with the rapid growth of instability in the domain of
longwave perturbations.

To be able to describe the experimental results one has to consider not only heterogenous chemical re~
actions, but also homogenous reactions in the liquid cover; the interface boundary should not be considered
as fixed in space, that is, hydrodynamic perturbations of the film surface should be taken into account. As
regards the experimental results [4, 5] it is important to establish the effect of film thickness on the stabili-
zation of mass transfer in a given chemical reactor.

Continuity of development of originally stationary motions in a liquid film is certainly of interest. The
linear analysis of stability of the system under consideration indicates a smooth state [9] of the original
perturbations.

The author would like to express his thanks to Yu. A. Buevich for his advice and guidance.
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