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Stabili ty is  ana lyzed  of a l a m i n a r  liquid f i lm during a he te rogeneous  chemica l  react ion.  The 
d i spe r s ion  equation is  obtained and s tabi l i ty  reg ions  a r e  found for  longwave, as  well  as shor t -  
wave,  pe r tu rba t ions .  

w M a s s - t r a n s f e r  p r o c e s s e s  on the in te r face  su r face  may  exe r t  a cons iderab le  effect  on s tabi l i ty  
c h a r a c t e r i s t i c s  of this  sur face ;  in p a r t i c u l a r ,  they m a y  r e su l t  in a speci f ic  su r face  ins tabi l i ty  - the s o - c a l l e d  
in te r face  turbulence  [1] whose m e c h a n i s m  is  c lose ly  r e l a t ed  to the r a t e  of m a s s  t r a n s f e r ;  this  r e su l t  has  been  
ve r i f i ed  by a n u m b e r  of e x p e r i m e n t s  [2-6]. 

The above-men t ioned  effect  i s  of cons iderab le  in te res t  in p r a c t i c e  in view of the i n c r e a s e  of a r t i f i c ia l ly  
p roduced  m a s s - t r a n s f e r  p r o c e s s e s  in a num ber  of chemica l  r e a c t o r s  ( for  example ,  in t h i n - l a y e r  r eac to r s ) .  
The m a s s  exchange is  genera l ly  accompan ied  by homogeneous o r  he te rogenous  chemica l  r eac t ions  which take 
p l ace  e i the r  in the liquid fi lm o r  in the sur rounding  (usual ly gaseous) phase .  

In i t s  full fo rmula t ion  the invest igat ion of s tabi l i ty  of this  kind of s y s t e m  with r e g a r d  to smal l  p e r t u r b a -  
t ions is v e r y  complex and m a t hem a t i ca l l y  involved. However,  to obtain p r e l i m i n a r y  qual i ta t ive r e su l t s  a 
somewhat  idea l ized  scheme  of su r face  ins tabi l i ty  is  cons idered  below (the ex i s tence  of thin hydrodynamic  and 
diffusion boundary  laye~-s is  a s s u m e d  c lose  to the sur face ,  the chemica l  r eac t ions  being he terogeneous  and of 
the f i r s t  order) .  The p r o b l e m  inves t iga ted  in this a r t i c l e  is  as  fo!lows: to find the regions  (depending on the 
wavelength  of the per turba t ions)  of s tabi l i ty  of a l a m i n a r  f i lm by solving the d i spe r s ion  equation taking into 
account  the Marangoni  effect  [1]. 

w Let  us cons ider  a thin liquid f i lm whose su r face  s e p a r a t e s  it  f rom the gas  phase .  A l a m i n a r  flow of 
the f i lm takes  p lace  (Re _ 20-30,  P r  >> 1) down a ve r t i ca l  p la te  in the grav i ta t ion  field with a gas  flow in con- 
tac t  with the sur face .  It is  a s s u m e d  that  the gas  mot ion takes  p lace  with a sufficiently slow ra te  so as  to 
ma in ta in  the l a m i n a r  s ta te  of the liquid flow. 

For  such a s y s t e m  the m a s s  exchange is l imi ted  by the t r a n s f e r  p r o c e s s e s  in the liquid, s ince the i r  
r a t e  is  m u c h  lower  than the co r respond ing  r a t e s  in a gas;  this enables  one to cons ider  the m a s s  t r a n s f e r  or~ly 
in the liquid phase .  On the f i lm su r f ace  a m o n o m o l e c u l a r  chemica l  react ion  A ~ B, t akes  p l ace  fo r  which a 
number  of a s sumpt ions  is made:  the reac t ion  is  i r r e v e r s i b l e ;  the produc t  of reac t ion  B is chemica l ly  p a s -  
sive;  the reagen t  A is chemica l ly  p a s s i v e  in the f i lm; the kinet ics  of  the p r o c e s s  is  mixed,  that  is ,  the ra te  of 
the chemica l  r eac t ion  is  comparab l e  with the speed  of t r anspor t ing  the reac t ing  ma t t e r .  

The equations of mot ion fo r  the liquid, as  wel l  as  the equation of convect ive diffusion in a thin f i lm, can 
be  cons iderab ly  s implif ied,  s ince the approx imat ions  can be  used  for  hydrodynamic  and for  diffusive boundary  
l a y e r s  [7]. 

In our  s y s t e m  the ana lys i s  of  m a s s  t r a n s f e r  cons i s t s  in solving a l i nea r i zed  s tabi l i ty  p r o b l e m  with r e -  
spect  to two-d imens iona l  infinitely smal l  pe r tu rba t ions  of ve loci ty  and of concentra t ion  which a r e  expanded 
into a F o u r i e r  s e r i e s  along the f i lm with an ampli tude depending on the c r o s s  sect ion coordinate.  

w The mot ion of the liquid fi lm is  governed  by the nonsta t ionary  N a v i e r - S t o k e s  equation in the bound- 
a r y - l a y e r  approx imat ion  in the (x, y) coordinate  plane;  x is m e a s u r e d  along the f i lm plane in the di rect ion of 
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the o r ig ina l  unper tu rbed  l a m i n a r  flow and y is  no rma l  to the p lane  towards  the depth of the liquid ( Fig. 1, 
w h e r e  1 denotes  the liquid f i lm and 2, the gas  flow). To ana lyze  the hydrodynamic  s tabi l i ty  of the f i lm, the 
ve loc i ty  components  a r e  r e p r e s e n t e d  in the fo rm 

where  Ux ~0), u~  ) a r e  the solut ions of  the s ta t ionary  equation and u~  ), u~ ) a r e  smal l  pe r tu rba t ions .  It follows 
f rom the gene ra l  theory  of convect ive  diffusion in fluids [7] that  for  high P rand t l  numbe r s  the th ickness  of 
the diffusion boundary  l a y e r  is  m a n y  t i m e s  s m a l l e r  than that  of the hydrodynamic  boundary  layer ;  the l a t t e r  
enables  one to se t  u~ ~ ident ical ly equal to the ve loc i ty  u of  the liquid flow on the f i lm surface .  If we p r o c e e d  
now to the flow function, 

o) _ 8~/8y, u~ i) = -- 8~18x Ux = 

= ,,(0) = 0, then the Nav ie r  so that  the continuity equation b e c o m e s  an identi ty and bea r i ng  in mind  that  u~  ) u, _y  
- S t o k e s  equation is  r educed  to the Helmholtz  type equation, 

(O/Ot § uO/Sx)A~ = vA2,, (3.1) 

where  v is  the k inemat ic  v i scos i ty .  A solution of Eq. (3.1) is  sought in the fo rm 

= T(y) exp [i(kx § cot)] 

with ampl i tude  

T(y) = A exp (~y), 

whe re  co and k a r e  the f requency  of  osc i l la t ions  and the wave  number  of the pe r tu rba t ions ,  r e spec t ive ly ;  A 
is a n u m e r i c a l  mul t ip l ie r .  Equation (3.1) then yie lds  for  X the re la t ion  

(~2 _ k2)[~ _ k ~ _ i(co + u k)v- l ]  = O, 

and, hence,  toge the r  with the boundary  condit ions,  

it follows that  

~ = k, X, - -  ~ = - - [k  ~ + ~(0 + u~)/vlv,, ~. 

If one r e g a r d s  the f i lm su r face  as  fiat ,  

u(~ " = 0 ( v  = 0 ) ,  

one obtains  a solution of Eq. (3.1) uniquely de t e rmined  up to a constant ,  

= A[exp ( - -ky )  - -  exp (--~y) ] exp [~(kx + cot)]. (3.2) 

w Mass  t r a n s f e r  in a liquid f i lm is  governed  by the convect ive-di f fus ion equation in the b o u n d a r y - l a y e r  
approximat ion .  The s ta t ionary  concentra t ion  of the reagen t  A sa t i s f i e s  the equation 

uOc~) /Ox = DO2c~) / Oy s, (4.1) 

whe re  C(a~ denotes  the s ta t ionary  concentra t ion;  D is  the diffusion coefficient.  Another  va r i ab l e  is  now in-  
t roduced,  namely ,  

~l = (u/4D)y 2x-1, 
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which resul t s  in replacing Eq. (4.1) by an o rd inary  differential  equation of the second order ,  

"qd2c?/d~l 0" +~q~-' i/2) dc(a~ = O. (4.2) 

The boundary condition on the film surface can be specified by the mixed kinetics of the chemical  r eac -  
tion, that is,  

DOc~) /ay  = - - q c ~  ) (y = 0), (4.3) 

where q is the constant ra te  of chemical  react ion.  Considering that the change in concentrat ion occurs  

in thin liquid layers ,  the conditions far  f rom the film surf-ace are  natural ly considered,  therefore  they 
are  specified at an infinitely large  distance f rom it, i.e., 

C(a ~ = c o (y-+ ~). (4.4) 

Integrating Eq. (4.2) and using the boundary conditions (4.3) and (4.4), one obtains the sought d is t r ibu-  
tion of the s ta t ionary concentrat ion in which the explicit dependence on x has been replaced by the pa rame t r i c  
dependence on the l inear  dimension L, 

C(a O) ~ __ c o (uD/~L) 1/2 , c o erf [(u/4DL)~/2y] 
q [1 -- (uD/gL)~/2/q] ~' [1 -- (uD/nL)l/2[ql ' 

and f rom the above one obtains in the case of q >> (uD/~L)  1/2 the relat ion 

c(~ ~ = c o err [(uy~/4DL)i/2]. (4.5) 

We now proceed  to the solving of the nonstat ionary equation of convective diffusion for  the concentrat ion 
of the substance A wri t ten in the form 

= 40)+ 4% 

where  

c(~ i) ---- Ga (y) exp [i (kx  + or)]. 

The nonstat ionary diffusion equation in its l inear  approximation with the obvious es t imate  

ac(~~ << Oc(,,~ av 
taken into account is t r ans fo rmed  into 

D a ' c ( ~ ' ) / a ~  ~ - -  uac (~ ' ) / ax  - oc (~ ' ) /a t  = - ( a r  ( a c ~ ) / a y ) ,  (4.6) 

where the expressions for the stat ionary concentration c(a O) and the stream function r are given by the d i s t r i -  
butions (3.2) and (4.5). The sys tem of equations (3.2), (4.5), and (4.6) is now completed by the boundary condi- 
tion 

c~) = 0 (y--~ oo). (4.7) 

On the film surface  the continuity condition for the tangentiM component of the s t r e s s  tensor  must  also 
be satisfied, that is, the equality of the viscous s t r e s s  and the surface force pe r  unit of film surface,  

:, [Ou~)/Oy + au~'/Ox] = (do/dc~))  ( 04" /Ox ) ,  (4.8) 

where  ~ is the dynamic viscos i ty  coefficient; a is the sur face- tens ion  coefficient. By vir tue of the known 
kinetics of a chemical  react ion one has 

DOc(~l)/ay . . . .  qc~ 1) (y - 0). (4.9) 

Equation {4.6) is reduced to the ord inary  inhomogeneous differential equation for the per turbat ion am-  
plitude Ga(Y): 

cFG, 'dy ~- + aG~ = ]~y), 

where  
a = --(i /D)(u.f:  + (0); 

[(y) = --(2ik/at2 D ) A  [exp (--ky) --  exp(--~y)]c o (u:4DL)U2 exp ( - - u , f - i D L ) ,  

and hence by using also the bouncl,~l'y condition (4.7) one finds 

g,~(y) = [B + A J~.(y) ] exp ( - - ia l /2y )  + A i [Ii(o: ) --  Ii(zj)] exp (ictt'2y). (4.10) 

where  
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A 1 = ik(ct/D)(u/z~DL)~/:A; 

Y Y 
I ,  (y) = Ti't ~ .  (e -a"  - -  e -~ ' )  exp [--  u ~ / 4 O L  - -  iod/~] dT; I ,  (Y),(,~'~-2ij, ~, (e -h" - -  e -:L') exp [--  u'~'/4DL -~ ir tiT; 

By subst i tut ing (4.10) in (4.8) and (4.9), one obtains  a sy s t em of two a lgebra ic  equations for  the con- 
s t a n t s  A and B with a vanishing de te rminant ,  

ilaDlrz(r -]- uk)Sl~ --I- q(o) q- uk) -4"2r oO ) = 0, (4.11) 

where  

6 = d(~ldc(,, t~, 

The above condition r e p r e s e n t s  the sought d i spe r s ion  equation which can be  sepa ra t ed  into two rea l  
equations:  

D1/2W2 + q(~l + ttk) --~ co6(v/p,)(u/rcDL)l,Zk~'Iml = 0; (4.12) 

DIlaWx - -  q~2 "~ co6(v/P~)(u/~DL) l/2k2ReI = O, 

where  ~1, ~2 a r e  the rea l  and imag ina ry  p a r t s  of w, I = 2iI1(~),  r e spec t ive ly ;  
i W,,~. = ~ 2  { ~ "Q~- [f~2 _ 3 (.q, q- uk f ]  -4- [f12 [.0.~ _ 3 (_o., + uk)2] 2 -b (f]~ -i- uk) '  [3.Q~ - -  (n,  -k uk f ]  z] ~/~} ~,,2 

w We now p r o c e e d  to the solving of the obtained d i spe r s ion  equation. It is not iced that  by reducing 
I~ (~o) to an in tegra l  of the Po i s son  type, one is  able to find i ts  exact  analyt ic  fo rm though the bulkiness  of the 
l a t t e r  m a k e s  it v e r y  difficult to solve analyt ical ly  the d i spers ion  equation i tself .  Only asympto t ic  va lues  of 
the in tegra l  It(oo) a r e  t h e r e f o r e  used. F i r s t  of all,  s t a t ionary  pe r tu rba t ions  a r e  found which sp read  in the 
s ta te  of neut ra l  s tabi l i ty ,  that  is ,  fo r  w = 0 (the pe r tu rba t i ons  ne i ther  grow nor  a r e  a t tenuated in the course  
of t ime).  If in the ca se  of smal l  wave number s  (k << L -~ ) one e s t i m a t e s  the in tegral  by  the s t e e p e s t - d e s c e n t  
method  [8], then one obtains  the p r inc ipa l  t e r m  of i ts  a sympto t i c  express ion ,  namely ,  

I~(~) = [(~ - -  2)/2](nDLIu)~/212(D/v) ~/2 - -  (D/v) lLk. 

One then finds f rom (4.11) the va lue  of the sought wave  number ,  

]':n = ( t / V - 3 )  (q,ttu) ~I2 [ce ~Dil2 ( 2~1/2 - Dll2) ]-1/2 ~ 2  

where  

L,, = (27]4)~tu~D ~,'2 [qScoS(2vl "- - -  D ~ ~-) ]-L (5.1) 

The re la t ion  (5.1) is  a condition imposed  on the p a r a m e t e r s  so that neut ra l  s tabi l i ty  takes  p lace  for  
longwave pe r tu rba t ions .  In the case  of  high wave number s  (k >> u / D ,  k >> L -1) ,  to e s t ima te  I1 (~) one 
neglects  t e r m s  of h igher  o r d e r s  of s m a l l n e s s  in the index of the exponential  in the exp re s s ion  under  the in te -  
g r a l  sign, thus obtaining 

I . ( :r  = u/2k(2vk - -  iu). 

One now obtains  f r o m  the d i spe r s ion  equation the shor twave  pe r tu rba t ions  spread ing  in the neut ra l  s tabil i ty 

s tate,  

k== {(t13/2) (Di/Uua/2lqv) q- [Du3/2q ~v~ - -  2Co6(u/nD L,~)l/e(~tq) - i  - -  2u/v]~/2} ~. 

The value Ln, that  is ,  the condition which has  to be  imposed  on the p a r a m e t e r s ,  can a lso  be  obtained 

f r o m  Eqs. (4.12). 

By cons ider ing  now the nons ta t ionary  pe r tu rba t i ons  (o: r 0), one can find the t r iv ia l  solution of the d is -  
p e r s i o n  equation,  

~ l  = - -  u k ,  ~ ~ = 0.  ( 5 . 2 )  

Consequently,  pe r tu rba t ions  whose rea l  f requency sa t i s f i es  the re la t ion  (5.2) s p r e a d  in the s ta te  of 
o sc i l l a to ry  s tabi l i ty .  An e s t i m a t e  of  the in tegra l  by the method of s t eepes t  descent  for  k << L - I  + ~ / u  given 
by  

I i ( ~ )  = [(~ - -  2)/2 ](~DL/u) ~/~ [2(D/v) ~/2 - -  (D/v) ](k + ~zlu)L 

2 2 0  



enables  one to find the o the r  value of the 
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rea l  f requency of pe r tu rba t ions  whose s tabi l i ty  is of osc i l l a to ry  

& 
~1 = 2c08 ( L/~tu) ~ ( 2vI/2 - -  DUe) k~, - -  uk~, 

k,----(I/~/5) (qgu)l/z [co6LDl/Z(2v~/2 - -  DI/~) ]-1/~. 

A s i m i l a r  e s t i m a t e  can also be  obtained in the genera l  case  of complex  f requency for  longwave p e r t u r -  
ba t ions  (k << L -1 + I w l /u ) .  

In the l a t t e r  case  the d i spe r s ion  re la t ion  is given by 

~_ = --  3c~8 ~ (L i eu )  2 (2v t/2 --  Dt/Z) 2k4 -F 4qc06 (L/Fu)  D-t~ 2 (2v~/z --  Dt/2) k ~- ~ q~/D. 

This  function is  shown in Fig. 2. The domain ~2 < 0 co r r e sponds  to the unstable  s ta te  and s > 0, to 
the s table  one. For  high wave number s  (k >> u/D) the in tegra l  is e s t i m a t e d  by means  of the express ion  

Ii(~ = - -  0!4)((0 + U/0v--ik -3, 

and the d i spers ion  equation then impl ies  that 

9_~ = 0 .  

Consequently,  pe r tu rba t ions  whose stabil i ty is not osc i l l a to ry  in c h a r a c t e r  do not exis t  in the shor twave  
domain under  considerat ion.  

w The quanti tat ive r e su l t s  obtained in the p reced ing  sect ion show the per iod ic  c h a r a c t e r  of s tabi l i ty  
fo r  the s y s t e m  under  invest igat ion,  that  is ,  the a l te rna t ing  pa t t e rn  of the s tabi l i ty  domains  with var ia t ion  in 
the wavelength,of  the per tu rba t ions .  The r a t e  of growth fo r  the pe r tu rba t ions  then depends on the physica l  
p a r a m e t e r s  of the s y s t e m s  as follows: a) a s t rong dependence of the su r face  tension on the concen-  
t r a t ion  of the d isso lved  m a t t e r  cont r ibutes  to a rapid  intensif icat ion of the pe r tu rba t ions ;  b) the i nc rea se  of 
the Prand t l  number s ,  which indicate that  convect ive  m a s s  t r a n s f e r  p r e v a i l s  o v e r  molecu la r ,  a lso i n c r e a s e s  
the r a t e  of growth of the pe r tu rba t ions ;  c) the growth ra t e  of the hydrodynamic  flux delays this p r o c e s s ;  d) 
the h igher  r a t e s  of chemica l  reac t ion  a r e  a s soc i a t ed  with the rapid  growth of instabi l i ty  in the domain of 
longwave pe r tu rba t ions .  

To be  able to desc r ibe  the expe r imen ta l  r e su l t s  one has to cons ider  not only he te rogenous  chemical  r e -  
act ions,  but a lso  homogenous reac t ions  in the liquid cover ;  the in te r face  boundary should not be  cons ide red  
as fixed in space,  that  is ,  hydrodynamic  pe r tu rba t ions  of the f i lm sur face  should be  taken into account. As 
r e g a r d s  the expe r imen ta l  r e su l t s  [4, 5] it is impor tan t  to es tab l i sh  the effect  of f i lm th ickness  on the s tabi l i -  
zation of m a s s  t r a n s f e r  in a given chemical  r eac to r .  

Continuity of development  of or iginal ly  s ta t ionary  mot ions  in a liquid fi lm is cer ta in ly  of in teres t .  The 
l i nea r  ana lys i s  of s tabi l i ty  of the s y s t e m  under  cons idera t ion  indicates  a smooth  s ta te  [9] of the or iginal  
pe r tu rba t ions .  

The author  would like to e x p r e s s  his thanks to Yu. A. Buevich for  his  advice and guidance. 
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